
Arcus

Sandia National Laboratories

Nov 07, 2019





IP ADDRESSES RANGES

1 IIPAddressRange 3

2 AbstractIPAddressRange 5

3 IPAddress Range 7

4 Subnet 11

5 Subnet Utilities 17

6 IP Address Range Comparers 21

7 IP Address Converters 23

8 IP Address Math 31

9 IP Address Utilities 33

10 IPAddress Comparers 37

11 AddressFamily Comparers 39

12 MacAddress 41

13 Frequently Asked Questions 45

14 Glossary 47

15 Handy References 49

16 Community 55

17 Acknowledgements 57

Index 59

i



ii



Arcus

Arcus is a C# manipulation library for calculating, parsing, formatting, converting, and comparing both IPv4 and IPv6
addresses and subnets. It accounts for 128-bit numbers on 32-bit platforms.

Arcus provides extension and helper methods for the pre-existing System.Net.IPAddress and other objects
within that realm. It was created to fill in some of the gaps left by the absence of a representation of a Subnet. As more
gaps were found, they were filled. Like all coding projects, Arcus is a work in progress. We rely on both our free time
and our community in order to provide the best solution we can given the constraints we must conform to.

Hint: Chances are you’re primarily here looking for the Subnet object.

Arcus heavily relies upon one of our other libraries Gulliver, if you’re interested in byte manipulation it is worth
checking out.

IP ADDRESSES RANGES 1

https://www.nuget.org/packages/Arcus/
https://github.com/sandialabs/arcus
https://github.com/sandialabs/Arcus/blob/master/LICENSE
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://gitter.im/sandialabs/Arcus?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://github.com/sandialabs/gulliver


Arcus

2 IP ADDRESSES RANGES



CHAPTER

ONE

IIPADDRESSRANGE

Arcus defines the IIPAddressRange interface for representation of consecutive IPAddress objects. It imple-
ments both IFormattable and IEnumerable<IPAddress>.

Caution: IIPAddressRange implements IEnumerable<IPAddress>, this means that you should pay
particular attention when you may be iterating over large ranges. Such as the full set of IPv6 addresses, which will
take a while. A long while. It isn’t recommended.

Hint: When dealing with more than one IPAddress or multiple implementations of IIPAddressRange unless
otherwise explicitly stated their AddressFamily, or equivalent properties, must match.

Hint: AddressFamily unless otherwise explicitly stated are expected to be either InterNetwork or
InterNetworkV6.

IIPAddressRange is implemented by AbstractIPAddressRange, IPAddress Range, and Subnet.

1.1 Functionality Promises

1.1.1 Properties

IIPAddressRange has a handful of useful properties for your use

AddressFamily AddressFamily The family of the Address Range. You’ll most likely encounter
InterNetwork or InterNetworkV6

IPAddress Head The first IPAddress within the range

bool IsIPv4 Returns true if, and only if, the range is IPv4

bool IsIPv6 Returns true if, and only if, the range is IPv6

bool IsSingleIP Returns true if, and only if, the range is comprised of only a single IPAddress

BigInteger Length The number of IPAddress within the range

IPAddress Tail The last IPAddress within the range

3



Arcus

1.1.2 Set Based Operations

At its core an implementation of the IIPAddressRange interface is a range of consecutive IPAddress objects,
as such there are some set based operations available.

HeadOverlappedBy

HeadOverlappedBy will return true if the head of this is within the range defined by IIPAddressRange
that.

bool HeadOverlappedBy(IIPAddressRange that);

TailOverlappedBy

TailOverlappedBy will return true if the tail of this is within the range defined by IIPAddressRange
that.

bool TailOverlappedBy(IIPAddressRange that);

Overlaps

Overlaps will return true if the head or tail of IIPAddressRange that is within the this
IIPAddressRange.

bool Overlaps(IIPAddressRange that);

Touches

Touches will return true if the tail of this IIPAddressRange is followed consecutively by the head of
IIPAddressRange that, or if the tail of IIPAddressRange that is followed consecutively by the head
of this IIPAddressRange without any additional IPAddress objects in between.

bool Touches(IIPAddressRange that);

1.1.3 Length and TryGetLength

The IIPAddressRange implements IEnumerable<IPAddress>, but because of the possible size of this range
it may not always be safe to attempt to do a count or get the length in a traditional manner. A BigInteger Length
property is provided but not always ideal but often necessary. Keep in mind the full range of IPv6 Addresses is 2128

in length. That’s 3.4 × 1038 or over 340 undecillion. Certainly not something that should be iterated in order to be
counted.

Given that the BigInteger object isn’t the best thing to drag around Arcus uses the magic of math and with the
various implementations of TryGetLength to get the length of the range in a more portable manner if possible,
returning true on success and outing the more reasonable int or long length.

bool TryGetLength(out int length);

bool TryGetLength(out long length);

4 Chapter 1. IIPAddressRange



CHAPTER

TWO

ABSTRACTIPADDRESSRANGE

The AbstractIPAddressRange is an abstract implementation of IIPAddressRange. It is extended by both IPAd-
dress Range, and Subnet.

2.1 Functionality Implementation

2.1.1 IFormatable

Extensions of AbstractIPAddressRange, depending on overrides and implementation, provide a general format
(G, g, or empty string) that will express a range of IP addresses in a head - tail format for example 192.168.
1.1 - 192.168.1.10.

Listing 1: AbstractIPAddressRange IFormattable Example

[Fact]
public void IFormattable_Example()
{

// Arrange
var head = IPAddress.Parse("192.168.0.0");
var tail = IPAddress.Parse("192.168.128.0");
var ipAddressRange = new IPAddressRange(head, tail);

const string expected = "192.168.0.0 - 192.168.128.0";

// Act
var formattableString = string.Format("{0:g}", ipAddressRange);

// Assert
Assert.Equal(expected, formattableString);

}

5



Arcus

6 Chapter 2. AbstractIPAddressRange



CHAPTER

THREE

IPADDRESS RANGE

IPAddressRange is a very basic implementation of an AbstractIPAddressRange used to represent an inclusive
range of arbitrary IP Addresses of the same address family. It isn’t restricted to a CIDR representation like a Subnet
is, allowing for non-power of two range sizes.

The IPAddressRange class extends AbstractIPAddressRange and implements IIPAddressRange,
IEquatable<IPAddressRange>, IComparable<IPAddressRange>, IFormattable, and
IEnumerable<IPAddress>.

3.1 Creation

3.1.1 constructor IPAddress head, IPAddress tail

To standard way of creating an IPAddressRange is to construct it via a IPAddress head and IPAddress
tail. This will construct an IPAddressRange that would inclusively start with the provided head and end with
tail.

Addresses MUST be the same address family (either InterNetwork or InterNetworkV6).

public IPAddressRange(IPAddress head, IPAddress tail)

3.1.2 constructor IPAddress address

On the rare occasion it may be desirable to make a IPAddressRange comprised of a single IPAddress. This too
is possible with the following constructor.

public IPAddressRange(IPAddress address)

3.2 Static Functionality

3.2.1 TryCollapseAll

TryCollapseAll attempts to or collapse the given input of IEnumerable<IPAddressRange> ranges into
as few ranges as possible thus minifying the number or ranges supporting the same data.

Ranges may be collapsed if, and only if, they either overlap, or touch each other and they share the same
AddressFamily.

7

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing


Arcus

The function call will return true if it could collapse two or more ranges. Regardless of if a collapse was possible
the out value for result will be comprised of an IEnumerable<IPAddressRange> of the calculated ranges.

public static bool TryCollapseAll(IEnumerable<IPAddressRange> ranges, out IEnumerable
→˓<IPAddressRange> result)

The following example shows that the three touching ranges of 192.168.1.0 - 192.168.1.5, 192.168.1.
6 - 192.168.1.7, and 192.168.1.8 - 192.168.1.20 were collapsed into the new IPAddressRange
of 192.168.1.0 - 192.168.1.20.

Listing 1: IPAddressRange TryCollapseAll Example

[Fact]
public void TryCollapseAll_Consecutive_Example()
{

// Arrange
var ranges = new[]

{
new IPAddressRange(IPAddress.Parse("192.168.1.0"), IPAddress.

→˓Parse("192.168.1.5")),
new IPAddressRange(IPAddress.Parse("192.168.1.6"), IPAddress.

→˓Parse("192.168.1.7")),
new IPAddressRange(IPAddress.Parse("192.168.1.8"), IPAddress.

→˓Parse("192.168.1.20"))
};

// Act
var success = IPAddressRange.TryCollapseAll(ranges, out var results);
var resultList = results?.ToList();

// Assert
Assert.True(success);
Assert.NotNull(results);
Assert.Single(resultList);

var result = resultList.Single();

Assert.Equal(IPAddress.Parse("192.168.1.0"), result.Head);
Assert.Equal(IPAddress.Parse("192.168.1.20"), result.Tail);

}

3.2.2 TryExcludeAll

TryExcludeAll is a tricky beast, but if you’re willing to take the time to tame it’ll not only respect you, but it may
also take care of you in very specific cases. The method takes a IPAddressRange initialRange and with that
it attempts to systematically remove each of the sub ranges defined within IEnumerable<IPAddressRange>
excludedRanges. On success, the operation returns true and will out an IEnumerable<IPAddressRange>
result which is comprised of a distinct remaining ranges after excludedRanges have been carved out.

public static bool TryExcludeAll(IPAddressRange initialRange, IEnumerable
→˓<IPAddressRange> excludedRanges, out IEnumerable<IPAddressRange> result)

8 Chapter 3. IPAddress Range



Arcus

3.2.3 TryMerge

TryMerge will take the input of IPAddressRange left and IPAddressRange right, and if the two
ranges touch or overlap, regardless of order, it will return true and out IPAddressRange mergedRange com-
prised of the now combined ranges sourcing its head from the lowest valued address of the two inputs and its tail
from the highest valued address of the two.

public static bool TryMerge(IPAddressRange left, IPAddressRange right, out
→˓IPAddressRange mergedRange)

3.2. Static Functionality 9



Arcus

10 Chapter 3. IPAddress Range



CHAPTER

FOUR

SUBNET

The Subnet type, flavored in both IPv4 or IPv6, is a representation of a subnetwork within Arcus. It is the workhorse
and original reason for the Arcus library. Outside the concept of the Subnet object, most everything else in Arcus is
auxiliary and exists only in support of making this one facet work. That’s not to say that the remaining pieces of the
Arcus library aren’t useful, on the contrary their utility can benefit a developer greatly. But that said, once the dark
and mysterious magic of the Subnet is understood the rest of Arcus should be easy to understand.

Keep in mind that a Subnet is not an arbitrary range of addresses, for that you want an IPAddress Range, but rather
conforms to a range of length 2𝑛 starting a particular position, following the typical rules of Classless Inter-Domain
Routing.

The Subnet class extends AbstractIPAddressRange and implements IIPAddressRange, IEquatable<Subnet>,
IComparable<Subnet>, IFormattable, and IEnumerable<IPAddress>.

Note: Be aware that Subnet does not extend IPAddress Range but does implement IIPAddressRange.

4.1 Creation

There are a number of ways to instantiate a Subnet. Your most likely candidates are direct construction with a new,
the use of a static factory method on the Subnet class, or the use of sub-set of static factory methods that handle
parsing of strings. Most of the factory methods have a “try” style safe alternative that will return a bool and out the
constructed value.

Note: Unless otherwise specified each creation technique is valid for both IPv4 and IPv6 subnetworks.

4.1.1 constructor IPAddress lowAddress, IPAddress highAddress

The most common way to create a Subnet is to construct it via a IPAddress lowAddress and IPAddress
highAddress. This will construct the smallest possible Subnet that would contain both IP addresses. Typically,
the address specified are the Network and Broadcast addresses (lower and higher bounds) but this is not necessary.

Addresses MUST be the same address family (either InterNetwork or InterNetworkV6).

public Subnet(IPAddress lowAddress, IPAddress highAddress)

11

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing


Arcus

4.1.2 constructor IPAddress address, int routingPrefix

It is also possible to create a Subnet from an IPAddress address and an int routingPrefix. This is
equivalent of programmatically using a CIDR to define your Subnet.

public Subnet(IPAddress address, int routingPrefix)

The following example shows that the IPAddress and routingPrefix constructor taking an input of 192.168.
1.1 and 24 creates a Subnet 192.168.1.0/32. Note that the Head is 192.168.1.0 and not 192.168.1.1,
this is done as Arcus will autocorrect the input to a valid Subnet. If this is not desired it is advised that you compare
the Head to the input in order to validate expectations.

Listing 1: Subnet Address and Route Prefix Constructor Example

[Fact]
public void Address_RoutePrefix_Subnet_Example()
{

// Arrange
var ipAddress = IPAddress.Parse("192.168.1.1");
const int routePrefix = 24;

// Act
var subnet = new Subnet(ipAddress, routePrefix);

// Assert
Assert.False(subnet.IsSingleIP);
Assert.Equal(256, subnet.Length);
Assert.Equal("192.168.1.0", subnet.Head.ToString());
Assert.Equal("192.168.1.255", subnet.Tail.ToString());
Assert.Equal(24, subnet.RoutingPrefix);
Assert.Equal("192.168.1.0/24", subnet.ToString());

}

4.1.3 constructor IPAddress address

On the rare occasion it may be desired to make a Subnet comprised of a single IPAddress. This is possible with
the following constructor.

public Subnet(IPAddress address)

The following example shows that the single IPAddress constructor taking an input of 192.168.1.1 creates a
Subnet 192.168.1.1/32 that is comprised of only the single input address.

Listing 2: Subnet Single Address Constructor Example

[Fact]
public void Single_Address_Subnet_Example()
{

// Arrange
var ipAddress = IPAddress.Parse("192.168.1.1");

// Act
var subnet = new Subnet(ipAddress);

// Assert

(continues on next page)

12 Chapter 4. Subnet

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing


Arcus

(continued from previous page)

Assert.Equal(1, subnet.Length);
Assert.Equal(ipAddress, subnet.Single());
Assert.True(subnet.IsSingleIP);
Assert.Equal("192.168.1.1/32", subnet.ToString());

}

4.1.4 factory IPAddress and NetMask

A once popular way to define a IPv4 subnetwork was to use a netmask, a specialized form of consecutive bitmasking,
along side an IPAddress.

The following factory methods may be used to create an IPv4 Subnet where as the IPAddress address is the
address, and the IPAddress netmask is the valid netmask.

public static Subnet FromNetMask(IPAddress address, IPAddress netmask)

public static bool TryFromNetMask(IPAddress address, IPAddress netmask, out Subnet
→˓subnet)

4.1.5 factory From Big-Endian Byte Arrays

IPAddress objects may not always be handy, in some cases only a couple of big-endian byte arrays may be available.
This will construct the smallest possible Subnet that would contain both byte arrays as IP addresses. Typically, the
address specified are the Network and Broadcast addresses (lower and upper bounds) but this is not necessary.

The given byte arrays are interpreted as being in big-endian ordering are are functionally the equivalent construction
an IPAddress using its byte[] constructor.

public static Subnet FromBytes(byte[] lowAddressBytes, byte[] highAddressBytes)

public static bool TryFromBytes(byte[] lowAddressBytes, byte[] highAddressBytes, out
→˓Subnet subnet)

4.1.6 parse string

It is pretty common to tote around a string as a representation of a subnet, but you needn’t do such any longer.
Assuming said string subnetString represents something roughly similar to a CIDR Arcus will hand you a
Subnet.

If a representation of an IP Address string is provided the resulting Subnet will consist of only that address.

public static Subnet Parse(string subnetString)

public static bool TryParse(string subnetString, out Subnet subnet)

4.1.7 parse IPAddress string and RoutingPrefix int

It is also possible to build a Subnet from an String address and an int routingPrefix.

4.1. Creation 13

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing


Arcus

public static Subnet Parse(string addressString, int routingPrefix)

public static bool TryParse(string addressString, int routingPrefix, out Subnet
→˓subnet)

4.1.8 parse IPAddress strings

A rather common way to to build a Subnet is to provide a pair of string objects, in this case a string
lowAddress and string highAddress. This will construct the smallest possible Subnet that would con-
tain both IP addresses. Typically, the address specified are the Network and Broadcast addresses (lower and higher
bounds) but this is not necessary.

public static Subnet Parse(string lowAddressString, string highAddressString)

public static bool TryParse(string lowAddressString, string highAddressString, out
→˓Subnet subnet)

4.2 Functionality

The Subnet implements IIPAddressRange, IEquatable<Subnet>, IComparable<Subnet>,
IFormattable, and IEnumerable<IPAddress>, and there by contains all the expected functionality it
inherits.

4.2.1 Properties

In addition to the properties defined in IIPAddressRange Subnet provides a few more additional options

IPAddress BroadcastAddress An alias to the Tail property

IPAddress Netmask The calculated netmask of the subnet, only valid for IPv4 based subnets. All
others will be return a null value

IPAddress NetworkPrefixAddress An alias to the Head property

int RoutingPrefix The routing prefix used to specify the subnet

BigInteger UsableHostAddressCount The number of usable addresses in the subnet ignoring both
the Broadcast and Network addresses

4.2.2 Set Based Operations

Inherently a Subnet is a range of IPAddress objects, as such there is some set based operations available.

In addition to the set based operations promised by IIPAddressRange, the Subnet type also has a few new options.

Contains

It is possible to easily check if a subnet is entirely encapsulates another subnet by using the Contains method on
the larger Subnet.

14 Chapter 4. Subnet



Arcus

public bool Subnet.Contains(Subnet subnet)

In the following example it is shown that 192.168.1.0/8 contains 192.168.0.0, but as expected 192.168.
1.0/8 does not contain 255.0.0.0/8

Listing 3: Subnet Contains Example

[Fact]
public void Contains_Example()
{

// Arrange
var subnetA = Subnet.Parse("192.168.1.0", 8); // 192.0.0.0 - 192.255.255.255
var subnetB = Subnet.Parse("192.168.0.0", 16); // 192.168.0.0 - 192.168.255.255
var subnetC = Subnet.Parse("255.0.0.0", 8); // 255.0.0.0 - 255.255.255.255

// Assert
Assert.True(subnetA.Contains(subnetB));
Assert.False(subnetA.Contains(subnetC));

}

Overlaps

It is possible determine if a subnet in any way overlaps another subnet, even if just by a single address, by using the
Contains between two subnets.

This is a transitive operation, so if Subnet A overlaps Subnet B then B overlaps A as well.

public bool Overlaps(Subnet subnet)

In the following example it is shown that 255.255.0.0/16 and 0.0.0.0/0 each overlap each other. However,
due to their disparate address families, ::/0 and 0.0.0.0/0 do not overlap despite being equivalent ranges in the
differing in integer spaces.

4.2. Functionality 15



Arcus

Listing 4: Subnet Overlaps Example

[Fact]
public void Overlaps_Example()
{

// Arrange
var ipv4SubnetA = Subnet.Parse("255.255.0.0", 16);
var ipv4SubnetB = Subnet.Parse("0.0.0.0", 0);

var ipv6SubnetA = Subnet.Parse("::", 0);
var ipv6SubnetB = Subnet.Parse("abcd:ef01::", 64);

// Act
Assert.True(ipv4SubnetA.Overlaps(ipv4SubnetB));
Assert.True(ipv4SubnetB.Overlaps(ipv4SubnetA));
Assert.True(ipv6SubnetA.Overlaps(ipv6SubnetB));
Assert.False(ipv6SubnetA.Overlaps(ipv4SubnetA));

}

4.2.3 IFormatable

Subnet offers a number or preexisting formats that are accessible via the standard ToString method provided by
IFormattable

Table 1: Subnet format values
Format Name Description Example
null, empty
string, g, G

Default /
General
format

CIDR representation 255.255.0.0/16

f, F “friendly”
format

CIDR representaion for Subnets of size > 1 Single ad-
dress representation for Subnetes of size 1

255.255.0.0/16
or 192.168.1.1

r, R range format A range represented by NetworkPrefix - Brodcast ab::3d00 -
ab::3dff

16 Chapter 4. Subnet



CHAPTER

FIVE

SUBNET UTILITIES

Arcus.Utilities.SubnetUtilities is a static utility class containing miscellaneous operations for Subnet
and collections there of. It is a catchall for methods and functionally that didn’t make sense on the Subnet class
itself.

5.1 find Fewest Consecutive Subnets

Given an inclusive range of IP Addresses defined by IPAddress left and IPAddress right get the fewest
consecutive subnets that would contain all addresses within the range between and no other addresses.

public static IEnumerable<Subnet> FewestConsecutiveSubnetsFor(IPAddress left,
→˓IPAddress right)

The following examples shows that the range defined by 192.168.1.3 - 192.168.1.5 fits in two consecutive
subnets defined by 192.168.1.4/31 and 192.168.1.3/32.

Listing 1: FewestConsecutiveSubnetsFor Example

[Fact]
public void FewestConsecutiveSubnetsFor_Example()
{

// Arrange
var left = IPAddress.Parse("192.168.1.3");
var right = IPAddress.Parse("192.168.1.5");

// Act
var result = SubnetUtilities.FewestConsecutiveSubnetsFor(left, right);

// Assert
Assert.Equal(2, result.Length);
Assert.Contains(Subnet.Parse("192.168.1.4/31"), result);
Assert.Contains(Subnet.Parse("192.168.1.3/32"), result);

}

5.2 find the Largest Subnet in an enumerable

The LargestSubnet` method, given an ``IEnumerable<Subnet> will select first largest subnet
from within the collection.

17



Arcus

Note: If there is no single largest in the input, the first largest subnet encountered will be returned. In cases such as
this it may be preferable to consider usage of the DefaultSubnetComparer.

public static Subnet LargestSubnet(IEnumerable<Subnet> subnets)

The following example provides that given the several oddly named sizes of subnets that trenta, composed of 1048576
addresses, is both largest and probably more caffeine than your originally anticipated.

Listing 2: LargestSubnet Example

[Fact]
public void LargestSubnet_Example()
{

// Arrange
var tall = Subnet.Parse("255.255.255.254/31"); // 2^1 = 2
var grande = Subnet.Parse("192.168.1.0/24"); // 2^8 = 256
var vente = Subnet.Parse("10.10.0.0/16"); // 2^16 = 65536
var trenta = Subnet.Parse("16.240.0.0/12"); // 2^20 = 1048576

var subnets = new[] { tall, grande, vente, trenta };

// Act
var result = SubnetUtilities.LargestSubnet(subnets);

// Assert
Assert.Equal(trenta, result);

}

5.3 find the Smallest Subnet in an enumerable

The SmallestSubnet method, given an IEnumerable<Subnet> will select the first smallest subnet from
within the collection.

Note: If there is no single smallest in the input, the first smallest subnet encountered will be returned. In cases such
as this it may be preferable to consider usage of the DefaultSubnetComparer.

public static Subnet SmallestSubnet(IEnumerable<Subnet> subnets)

The included example shows that given the several seemingly familiar named subnets that tall, composed of 2 ad-
dresses, is not only the smallest, but likely will cost you a few bucks and taste a bit burnt.

Listing 3: SmallestSubnet Example

[Fact]
public void SmallestSubnet_Example()
{

// Arrange
var tall = Subnet.Parse("255.255.255.254/31"); // 2^1 = 2
var grande = Subnet.Parse("192.168.1.0/24"); // 2^8 = 256
var vente = Subnet.Parse("10.10.0.0/16"); // 2^16 = 65536
var trenta = Subnet.Parse("16.240.0.0/12"); // 2^20 = 1048576

(continues on next page)

18 Chapter 5. Subnet Utilities



Arcus

(continued from previous page)

var subnets = new[] { tall, grande, vente, trenta };

// Act
var result = SubnetUtilities.SmallestSubnet(subnets);

// Assert
Assert.Equal(tall, result);

}

5.3. find the Smallest Subnet in an enumerable 19



Arcus

20 Chapter 5. Subnet Utilities



CHAPTER

SIX

IP ADDRESS RANGE COMPARERS

Unsurprisingly, sometimes it is necessary to compare an IIPAddressRange to another. For that an implementation of a
Comparer<IIPAddressRange> is just what the code monkey ordered.

6.1 DefaultIPAddressRangeComparer

Note: the DefaultIPAddressRangeComparer will happily compare IIPAddressRange of differing ad-
dress families.

The DefaultIPAddressRangeComparer is a Comparer<IIPAddressRange> that compares implemen-
tations of IIPAddressRange first by their IIPAddressRange.Head and then by their total length.

By default the two IIPAddressRange.Head values are compared via the DefaultIPAddressComparer, but that
may be overridden by providing your own IComparer<IPAddress> to the appropriate constructor.

public DefaultIPAddressRangeComparer()

public DefaultIPAddressRangeComparer(IComparer<IPAddress> ipAddressComparer)

21



Arcus

22 Chapter 6. IP Address Range Comparers



CHAPTER

SEVEN

IP ADDRESS CONVERTERS

Arcus.Converters.IPAddressConverters is a static utility class containing conversion methods for con-
verting IPAddress objects into something else.

7.1 Integer Converters

Integer Converters are used to turn an IPAddress into an integer value.

7.1.1 Netmask To Cidr Route Prefix

Warning: This operation only valid for IPv4 netmasks.

NetmaskToCidrRoutePrefix will convert the valid IPv4 IPAddress netmask into a CIDR route prefix.

public static int NetmaskToCidrRoutePrefix(this IPAddress netmask)

The following example generates a table of all route prefixes for the equivalent netmask IPAddress input. Note that
this example uses Gulliver1 in order to deal with byte manipulation.

Listing 1: NetmaskToCidrRoutePrefix Example

public void NetmaskToCidrRoutePrefix_Example()
{

// equivalent byte value of 255.255.255.255 or 2^32
var maxIPv4Bytes = Enumerable.Repeat((byte) 0xFF, 4)

.ToArray();

// build all valid net masks
var allNetMasks = Enumerable.Range(7, 10)

.Select(i => maxIPv4Bytes.ShiftBitsLeft(32 - i)) //
→˓use Gulliver to shift bits of byte array

.Select(b => new IPAddress(b))

.ToArray();

var sb = new StringBuilder();

(continues on next page)

1 Interested in byte manipulation? Is endianess your calling? You should check out Gulliver, an awesome opensource C# library developed by
a number of smart and attractive people that like playing with thier bits.

23

https://github.com/sandialabs/gulliver


Arcus

(continued from previous page)

foreach (var netmask in allNetMasks)
{

var routePrefix = netmask.NetmaskToCidrRoutePrefix();
_ = sb.Append(routePrefix)

.Append('\t')

.AppendFormat("{0,-15}", netmask)

.Append('\t')

.Append(netmask.GetAddressBytes()
.ToString("b")) // using Gulliver to print bytes as bits

.AppendLine();
}
this.output.WriteLine(sb.ToString());

}

Listing 2: NetmaskToCidrRoutePrefix Example Output

7 254.0.0.0 11111110 00000000 00000000 00000000
8 255.0.0.0 11111111 00000000 00000000 00000000
9 255.128.0.0 11111111 10000000 00000000 00000000
10 255.192.0.0 11111111 11000000 00000000 00000000
11 255.224.0.0 11111111 11100000 00000000 00000000
12 255.240.0.0 11111111 11110000 00000000 00000000
13 255.248.0.0 11111111 11111000 00000000 00000000
14 255.252.0.0 11111111 11111100 00000000 00000000
15 255.254.0.0 11111111 11111110 00000000 00000000
16 255.255.0.0 11111111 11111111 00000000 00000000

7.2 String Converters

Unfortunately IPAddress does not implement IFormattable, and we chose for compatibility sake not to to
extend IPAddress with our own proxy class. This however does not mean we don’t want that precious data hidden
within.

It should not be a profound world changing experience to realize that string converters will convert IPAddress to a
string. Game changing perhaps, but not world changing.

7.2.1 ToDottedQuadString

ToDottedQuadString will take the IPv6 input of IPAddress ipAddress and convert it into a dotted quad
representation.

Warning: A non-IPv6 input will cause the method to simply return the value of the input IPAddress.

public static string ToDottedQuadString(this IPAddress ipAddress)

The example below shows the output generated by calling the ToDottedQuadString extension method on an
IPAddress.

24 Chapter 7. IP Address Converters



Arcus

Listing 3: ToDottedQuadString Example

public void ToDottedQuadString_Example()
{

var addresses = new[]
{

"::",
"::ffff",
"a:b:c::ff00:ff",
"ffff::",
"ffff::0102:0304",
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"

}.Select(IPAddress.Parse)
.ToArray();

var sb = new StringBuilder();

foreach (var address in addresses)
{

var dottedQuadString = address.ToDottedQuadString();

sb.AppendFormat("{0,-40}", address)
.Append('\t').Append("=>").Append('\t')
.Append(dottedQuadString)
.AppendLine();

}

output.WriteLine(sb.ToString());
}

Listing 4: ToDottedQuadString Example Output

:: => ::0.0.0.0
::ffff => ::0.0.255.255
a:b:c::ff00:ff => a:b:c::255.0.0.255
ffff:: => ffff::0.0.0.0
ffff::102:304 => ffff::1.2.3.4
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff =>
→˓ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255

7.2.2 ToHexString

ToHexString may be used to encode the IPAddress ipAddress as a Big-Endian1 ordered string. It will keep
all zero-valued most significant bytes.

public static string ToHexString(this IPAddress ipAddress)

The example below shows the output created by calling the ToHexString extension method on an IPAddress.

Listing 5: ToHexString Example

public void ToHexString_Example()
{

var addresses = new[]
{

(continues on next page)

7.2. String Converters 25



Arcus

(continued from previous page)

"::",
"::ffff",
"10.1.1.1",
"192.168.1.1",
"255.255.255.255",
"ffff::",
"ffff::0102:0304",
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"

}.Select(IPAddress.Parse)
.ToArray();

var sb = new StringBuilder();

foreach (var address in addresses)
{

var hexString = address.ToHexString();

sb.AppendFormat("{0,-40}", address)
.Append('\t').Append("=>").Append('\t')
.Append(hexString)
.AppendLine();

}

output.WriteLine(sb.ToString());
}

Listing 6: ToHexString Example Output

:: => 00000000000000000000000000000000
::ffff => 0000000000000000000000000000FFFF
10.1.1.1 => 0A010101
192.168.1.1 => C0A80101
255.255.255.255 => FFFFFFFF
ffff:: => FFFF0000000000000000000000000000
ffff::102:304 => FFFF0000000000000000000001020304
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff => FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

7.2.3 ToNumericString

ToNumericString takes the provided IPAddress ipAddress and will return a string representing an un-
signed integer value of said address.

Note: The return value will be somewhere between 0 and 340282366920938463463374607431768211455.

public static string ToNumericString(this IPAddress ipAddress)

The example below shows the output created by calling the ToNumericString extension method on an
IPAddress.

Listing 7: ToNumericString Example

public void ToNumericString_Example()
{

(continues on next page)

26 Chapter 7. IP Address Converters



Arcus

(continued from previous page)

var addresses = new[]
{

"::",
"::ffff",
"10.1.1.1",
"192.168.1.1",
"255.255.255.255",
"ffff::",
"ffff::0102:0304",
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"

}.Select(IPAddress.Parse)
.ToArray();

var sb = new StringBuilder();

foreach (var address in addresses)
{

var numericString = address.ToNumericString();

sb.AppendFormat("{0,-40}", address)
.Append('\t').Append("=>").Append('\t')
.Append(numericString)
.AppendLine();

}

output.WriteLine(sb.ToString());
}

Listing 8: ToNumericString Example Output

:: => 0
::ffff => 65535
10.1.1.1 => 167837953
192.168.1.1 => 3232235777
255.255.255.255 => 4294967295
ffff:: =>
→˓340277174624079928635746076935438991360
ffff::102:304 =>
→˓340277174624079928635746076935455900420
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff =>
→˓340282366920938463463374607431768211455

7.2.4 ToUncompressedString

ToUncompressedString converts the given IPAddress ipAddress input to an “uncompressed” IPv4 or
IPv6 address string.

The function will add appropriate most significant zeros between octects and hextets, as well as expanding ‘::’ to the
appropriate zeroed-hextets in IPv6 addresses.

public static string ToUncompressedString(this IPAddress ipAddress)

The example below shows the output created by calling the ToUncompressedString extension method on an
IPAddress.

7.2. String Converters 27



Arcus

Listing 9: ToUncompressedString Example

public void ToUncompressedString_Example()
{

var addresses = new[]
{

"::",
"::ffff",
"10.1.1.1",
"192.168.1.1",
"255.255.255.255",
"ffff::",
"ffff::0102:0304"

}.Select(IPAddress.Parse)
.ToArray();

var sb = new StringBuilder();

foreach (var address in addresses)
{

var uncompressedString = address.ToUncompressedString();

sb.AppendFormat("{0,-40}", address)
.Append('\t').Append("=>").Append('\t')
.Append(uncompressedString)
.AppendLine();

}

output.WriteLine(sb.ToString());
}

Listing 10: ToUncompressedString Example Output

:: =>
→˓0000:0000:0000:0000:0000:0000:0000:0000
::ffff =>
→˓0000:0000:0000:0000:0000:0000:0000:ffff
10.1.1.1 => 010.001.001.001
192.168.1.1 => 192.168.001.001
255.255.255.255 => 255.255.255.255
ffff:: =>
→˓ffff:0000:0000:0000:0000:0000:0000:0000
ffff::102:304 =>
→˓ffff:0000:0000:0000:0000:0000:0102:0304

7.2.5 ToBase85String

ToBase85String will take an IPv6 IPAddress ipAddress and convert it to Base85, AKA Ascii85, in accor-
dance to RFC19242 which defines a “A Compact Representation of IPv6 Addresses”.

Note: The input of a non-IPv6 address will return an empty string.

2 RFC 1924 is an April Fools Day Joke, but we implemented it anyhow. The question is, did we realize it was a joke before we implemented it
or not. Ah, programmer jokes. There are 10 types of developers out there, those that get the joke, and those that don’t.

28 Chapter 7. IP Address Converters

http://tools.ietf.org/html/rfc1924


Arcus

public static string ToBase85String(this IPAddress ipAddress)

The example below shows the output created by calling the ToBase85String extension method on an
IPAddress.

Listing 11: ToBase85String Example

public void ToBase85String_Example()
{

var addresses = new[]
{

"::",
"::ffff",
"1080:0:0:0:8:800:200C:417A", // specific example from RFC 1924
"ffff::",
"ffff::0102:0304",
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"

}.Select(IPAddress.Parse)
.ToArray();

var sb = new StringBuilder();

foreach (var address in addresses)
{

var base85String = address.ToBase85String();

sb.AppendFormat("{0,-40}", address)
.Append('\t').Append("=>").Append('\t')
.Append(base85String)
.AppendLine();

}

output.WriteLine(sb.ToString());
}

Listing 12: ToBase85String Example Output

:: => 00000000000000000000
::ffff => 00000000000000000960
1080::8:800:200c:417a => 4)+k&C#VzJ4br>0wv%Yp
ffff:: => =q{+M|w0(OeO5^EGP660
ffff::102:304 => =q{+M|w0(OeO5^EGqpaA
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff => =r54lj&NUUO~Hi%c2ym0

7.2. String Converters 29



Arcus

30 Chapter 7. IP Address Converters



CHAPTER

EIGHT

IP ADDRESS MATH

Too frequently the existing implementation of the C# IPAddress object is too limited for anything beyond some
of the most trivial interactions. Mathematical operations in fact are wholly absent, forcing developers to directly
manipulate bytes1, often requiring a great deal of manual implementation of non-existent byte math. Don’t worry
though, Arcus is here to fill in some of those gaps.

Note: Unless otherwise specified regarding the math of the IPAddress object treats it as an unsigned integer based
on its bytes interpenetrated as 32-bit for IPv4 and 128-bit for IPv6 all in big-endian byte order.

8.1 Increment

Incrementing an IPAddress allows for the the addition or subtraction of a provided optional long delta value.

There exist two implementations of Increment methods. Increment and the safe TryIncrement.

public static IPAddress Increment(this IPAddress input, long delta = 1)

public static bool TryIncrement(IPAddress input, out IPAddress address, long delta =
→˓1)

8.2 Comparisons

8.2.1 Compare to Another IPAddress

The IPAddress does not implement the standard comparison operators, and thus far we can’t write extension meth-
ods for operators on a class2. Arcus did the next best thing, deciding not to extend the IPAddress, opting to provide
a handful of simple extension methods to bend the will of the IPAddress to suit our needs.

Note: Barring the use of the methods below, the DefaultIPAddressComparer may also be of interest to you.

It should be pretty obvious based on name alone as to what each of the following five methods will accomplish:
1 If you actually want to manipulate bytes take a gander at Gulliver, an C# library developed by the same folks that wrote Arcus. They’re kinda

great.
2 A GitHub issue for Extension function members requesting a champion for some proposed changes regarding the future of extension methods.

31

https://github.com/sandialabs/gulliver
https://github.com/dotnet/csharplang/issues/192


Arcus

public static bool IsEqualTo(this IPAddress left, IPAddress right)

public static bool IsGreaterThan(this IPAddress left, IPAddress right)

public static bool IsGreaterThanOrEqualTo(this IPAddress left, IPAddress right)

public static bool IsLessThan(this IPAddress left, IPAddress right)

public static bool IsLessThanOrEqualTo(this IPAddress left, IPAddress right)

8.2.2 Get IsBetween

Slightly different than the other comparison extension method above is the IsBetween method. As is hopefully is
obvious it will test if an IPAddress occurs numerically between the given high and low addresses. Likewise the
inclusive bit may be set to include equality to either low or high to be considered an inclusive between.

public static bool IsBetween(this IPAddress input, IPAddress low, IPAddress high,
→˓bool inclusive = true)

8.2.3 Get Min / Max

The Min and Max methods will return the IPAddress left or IPAddress right that is the smallest or largest
of the two respectively.

public static IPAddress Min(IPAddress left, IPAddress right)

public static IPAddress Max(IPAddress left, IPAddress right)

8.2.4 Determine Scale

IsAtMin and IsAtMax tests the IPAddress address to determine if it is at its minimum or maximum value
respectively.

Note: For IPv4 the minimum value is 0.0.0.0 (0), and maximum is 255.255.255.255 (232 − 1)

Note: For IPv6 the minimum value is :: (0), and maximum is
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2128 − 1)

public static bool IsAtMin(this IPAddress address)

public static bool IsAtMax(this IPAddress address)

32 Chapter 8. IP Address Math



CHAPTER

NINE

IP ADDRESS UTILITIES

Arcus.Utilities.IPAddressUtilities is a static utility class containing miscellaneous methods and defi-
nitions for the IPAddress object.

9.1 Useful Values

Included within are some handy-dandy constant values and static readonly properties:

int IPv4BitCount The number of bits in an IPv4 address (32)

int IPv4ByteCount The number of bytes in an IPv4 address (4)

int IPv4OctetCount The number of octets in an IPv4 address (4)

int IPv6BitCount The number of bits in an IPv6 address (128)

int IPv6ByteCount The number of bytes in an IPv6 address (16)

int IPv6HextetCount The number of hextets in an IPv6 address (8)

IPAddress IPv4MaxAddress The maximum IPv4 Address value (0.0.0.0)

IPAddress IPv4MinAddress The minimum IPv4 Address value (255.255.255.255)

IPAddress IPv6MaxAddress The maximum IPv6 value (ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff)

IPAddress IPv6MinAddress The minimum IPv6 value (::)

IReadOnlyCollection<AddressFamily> ValidAddressFamilies The standard valid
AddressFamily values (InterNetwork and InterNetworkV6)

9.2 Methods

9.2.1 Minimum and Maximum Address

Given an instance of AddressFamily the MinIPAddress and MaxIPAddress methods will return the mini-
mum value of an address with the AddressFamily or the maximum value respectively.

Warning: these methods are only valid for InterNetwork and InterNetworkV6

public static IPAddress MinIPAddress(this AddressFamily addressFamily)

33



Arcus

public static IPAddress MaxIPAddress(this AddressFamily addressFamily)

9.2.2 Address Family Detection

Given an instance of IPAddress ipAddress the IsIPv4 and IsIPv6 methods will return true if the given
address has the address family InterNetwork or InterNetworkV6 respectively.

public static bool IsIPv4(this IPAddress ipAddress)

public static bool IsIPv6(this IPAddress ipAddress)

9.2.3 Address Format Detection

Arcus provides a few ways to detect the format of an IPAddress that isn’t already built into the pre-existing C#
packages.

IsIPv4MappedIPv6

IsIPv4MappedIPv6will return true if, and only if,‘‘IPAddress ipAddress‘‘ is an IPv4 addressed mapped to IPv6.

This check is made in accordance of in accordance to RFC4291 - IP Version 6 Addressing Architecture - 2.5.5.2.
“IPv4-Mapped IPv6 Address.”

public static bool IsIPv4MappedIPv6(this IPAddress ipAddress)

IsValidNetMask

IsValidNetMask checks if the given IPAddress netmask is a valid IPv4 netmask, if, and only if, it is then
the method returns true.

public static bool IsValidNetMask(this IPAddress netmask)

9.2.4 Parsing

Arcus provides a few more out of the box parsing mechanisms to convert different types of input into an IPAddress.

Most of these new parsing routines have a “safe” method that will be prefixed by “Try” that will return true on a
successful parsing and will out the IPAddress.

Hexadecimal

ParseFromHexString and TryParseFromHexString will attempt to parse a hexadecimal string input
as an IP Address of the given AddressFamily addressFamily.

Note: Valid input must be comprised of only hexadecimal characters with an optional “0x” prefix. Input is case
insensitive, and assumed to be in big-endian byte order. Zero valued most significant bytes will be ignored.

34 Chapter 9. IP Address Utilities

https://tools.ietf.org/html/rfc4291#section-2.5.5.2


Arcus

public static IPAddress ParseFromHexString(string input, AddressFamily addressFamily)

public static bool TryParseFromHexString(string input, AddressFamily addressFamily,
→˓out IPAddress address)

Octal

By Microsoft’s implementation of the IPAddress.Parse(string) any string representation of an IP Address
having a zero-valued most significant number in an octet position is interpreted as octal (base 8) rather than decimal
(base 10). This isn’t always a desired way to go about parsing values.

These methods convert an string input IPv4 address representation to IPAddress instance ignoring leading
zeros (octal notation) of dotted quad format.

public static IPAddress ParseIgnoreOctalInIPv4(string input)

public static bool TryParseIgnoreOctalInIPv4(string input, out IPAddress address)

byte[]

The following byte[] parsing methods will attempt to convert a big-endian ordered byte array to an IPAddress
automatically providing the appropriate number of zero-valued most significant bytes as needed to meet the desired
address family.

Note: This implementation differs from the constructor implementation on IPAddress that takes byte[] as input.
Said constructor takes an explicit sized byte array and will outright fail if the input isn’t explicitly 4 or 16 bytes long.

public static IPAddress Parse(byte[] input, AddressFamily addressFamily)

public static bool TryParse(byte[] input, AddressFamily addressFamily, out IPAddress
→˓address)

9.2. Methods 35



Arcus

36 Chapter 9. IP Address Utilities



CHAPTER

TEN

IPADDRESS COMPARERS

IP Addresses are just numbers. Numbers are comparable. Some are bigger, some are smaller, some are even equal.

10.1 DefaultIPAddressComparer

Note: the DefaultIPAddressComparer will gladly compare IPAddress of differing address families.

The DefaultIPAddressComparer extends Comparer<IPAddress>. Its behavior is to first compare two
IPAddress objects via the IComparer<AddressFamily> and then ordinally based on the IPAddress big-
endian unsigned integer value.

By default the DefaultAddressFamilyComparer is used to compare the address families of the addresses, but that may
be overridden by providing your own IComparer<AddressFamily> to the appropriate constructor

public DefaultIPAddressComparer()

public DefaultIPAddressComparer(IComparer<AddressFamily> addressFamilyComparer)

37



Arcus

38 Chapter 10. IPAddress Comparers



CHAPTER

ELEVEN

ADDRESSFAMILY COMPARERS

AddressFamily comparers are simply classes that extend Comparer<AddressFamily>.

11.1 DefaultAddressFamilyComparer

Behind the scenes AddressFamily is simply an enum. Typically we’re only concerned with InterNetwork,
with a value of 2, and InternNetworkV6 which is valued at 23.

The DefaultAddressFamilyComparer is used to compare the address families of the addresses. No real magic
here, we’re simply comparing two AddressFamily values based on their inherit inherit value.

Listing 1: Compare Implementation

public override int Compare(AddressFamily x,
AddressFamily y)

{
return x.CompareTo(y);

}

39



Arcus

40 Chapter 11. AddressFamily Comparers



CHAPTER

TWELVE

MACADDRESS

The MacAddress type represents a 48-bit MAC Address1 as per the IEEE EUI standard3. It serves the purpose of a
Networking Adjacent worker class, and as a handy way to represent, store, format, and compare MAC addresses.

The MacAddress class implements IEquatable<MacAddress>, IComparable<MacAddress>,
IComparable, IFormattable, and ISerializable.

Note: Unless otherwise stated recognized readable MAC Address formats include only the following formats:

• IEEE 802 format for printing EUI-48 and MAC-48 addresses in six groups of two hexadecimal digits, separated
by a dash (-). E.g. AA-BB-CC-DD-EE-FF

• Common Six groups of two hexadecimal digits separated by colons (:). E.g. AA:BB:CC:DD:EE:FF

• Six groups of two hexadecimal digits separated by a space character. E.g. AA BB CC DD EE FF

• 12 hexadecimal digits with no delimitation. E.g. AABBCCDDEEFF

• Cisco three groups of four hexadecimal digits separated by dots (.). E.g. AABB.CCDD.EEFF

For the sake of parsing and reading these formats are case insensitive.

Fig. 1: Structure of a MAC-48 Address

12.1 Creation

12.1.1 Constructor

IEnumerable<byte>

A new MacAddress may be constructed by providing an IEnumerable<byte> of six bytes to the constructor.

public MacAddress(IEnumerable<byte> bytes)

1 48-Bit MAC is a Media Access Control Address (MAC) following both the now deprecated MAC-48 and the active EUI-48 specifications.
3 Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID)

41

https://commons.wikimedia.org/wiki/File:MAC-48_Address.svg
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf


Arcus

12.1.2 Factory

Parse string

A MacAddress may also be created via either the Parse or safe TryParse method. Not that these methods are
strict in that they will only succeed with a MAC address in a known format. If you wish to more liberally parse a string
into a MacAddress see the ParseAny and TryParseAny defined below.

public static MacAddress Parse(string input)

public static bool TryParse(string input, out MacAddress macAddress)

ParseAny string

ParseAny and the safe TryParseAny allow the parsing of an arbitrary string that may be a Mac address into a
MacAddress. It looks for six hexadecimal digits within the string, joins them and interprets the result as consecutive
big-endian hextets. If six, and only six, hexadecimal digits are not found the parse will fail.

public static MacAddress ParseAny(string input)

public static bool TryParseAny(string input, out MacAddress macAddress)

12.2 Functionality

12.2.1 Properties

bool IsDefault returns true if, and only if, the MAC Address is the EUI-48 default2, meaning all bits
of the MAC Address are set making it equivalent to FF:FF:FF:FF:FF:FF.

bool IsGloballyUnique returns true if, and only if, is globally unique (OUI4 enforced).

bool IsLocallyAdministered returns true if, and only if, is locally administered.

bool IsMulticast returns true if, and only if, the MAC Address is multicast.

bool IsUnicast returns true if, and only if, the MAC Address is unicast.

bool IsUnusable returns true if, and only if, the MAC Address is “unusable”, meaning all OUI bits
of the MAC Address are unset.

MacAddress DefaultMacAddress Provides a MacAddress that represents the default or null case
MAC address.

Regex AllFormatMacAddressRegularExpression Returns a regular expression for matching accepted
MAC Address formats.

Regex CommonFormatMacAddressRegularExpression Returns a regular expression for matching
the “common” six groups of two uppercase hexadecimal digits format.

string AllFormatMacAddressPattern Returns a regular expression pattern for matching accepted
MAC Address formats.

2 The recommended null or default value for EUI-48 is FF-FF-FF-FF-FF-FF
4 Organizationally Unique Identifier (OUI) is the first 3-bytes (24-bits) of a MAC-48 MAC Address.

42 Chapter 12. MacAddress



Arcus

string CommonFormatMacAddressPattern Returns a regular expression pattern for matching the
“common” six groups of two uppercase hexadecimal digits format.

12.2.2 Methods

GetAddressBytes

GetAddressBytes returns a copy of the underlying big-endian bytes of the MacAddress. This will always be
six bytes in length.

public byte[] GetAddressBytes()

GetOuiBytes

GetOuiBytes returns the Organizationally Unique Identifier (OUI)4 of the MAcAddress.

public byte[] GetOuiBytes()

GetCidBytes

GetCidBytes returns the Company ID (CID)5 of the MAcAddress.

public byte[] GetCidBytes()

12.2.3 IFormatable

MacAddress offers a number or preexisting formats that are accessible via the standard ToStringmethod provided
by IFormattable interface.

Table 1: Subnet format values
For-
mat

Name Description Example

g General Format Uppercase hexadecimal encoded bytes separated by colons AA:BB:CC:DD:EE:FF
H Uppercase Hex-

adecimal
Contiguous uppercase hexadecimal digits AABBCCDDEEFF

h Lowercase Hex-
adecimal

Contiguous lowerrcase hexadecimal digits aabbccddeeff

c Cisco Three groups of four uppercase hexadecimal digits sepa-
rated by periods

AAAA.BBBB.
CCCC

s Space delimited
hextets

Hexadecimal bytes separated by a space character AA BB CC DD
EE FF

d IEEE 802 Hexadecimal encoded bytes separated by a dash characte AA-BB-CC-DD-EE-FF
i Integer Big-endian integer value 187723572702975

5 Company Id (Cid) is the last 3-bytes (24-bits) of a MAC-48 MAC Address.

12.2. Functionality 43



Arcus

12.2.4 Operators

MacAddress implements all the standard C# equality and comparison operators. The comparison operators treat the
MacAddress bytes as an unsigned big-endian integer value.

44 Chapter 12. MacAddress



CHAPTER

THIRTEEN

FREQUENTLY ASKED QUESTIONS

13.1 IPv6 is big, huh?

Yes

13.1.1 Can you elaborate?

Absolutely.

There are 2128 possible IPv6 Addresses, compared to the 232 possible IPv4 addresses.

That’s roughly 3.4× 1038 addresses.

340 undecillion 282 decillion 366 nonillion 920 octillion 938 septillion 463 sextillion 463 quintillion 374 quadrillion
607 trillion 431 billion 768 million 211 thousand 456 to be exact.

Let’s face it, arbitrary numbers much bigger than 7 are hard to conceptualize for some of us1. I personally get lost
after three-ish. The awe inspiring scale of IPv6 is much bigger than 3, at least double, probably even over triple that.
It is so big we had to jump through some hoops to make C# do the math necessary. This is why both the Arcus and
Gulliver libraries now exist.

As a thought exercise let’s try to visualize the mighty scale of IPv6.

According to un data estimates there are approximately 7.55 billion people alive as I write this sentence.

If we take all 2128 IPv6 addresses and distribute them equally amongst everyone we’d each get about 4.51 × 1028

addresses. That’s a rather lot of IoT devices to keep track of.

Thanks to new and inventive imaginary non-existent technology we’re going to assign each of our grain of sand sized
network devices an address from our own personal IPv6 address pool. This will be a wireless network obviously, it is
rather difficult to jam a RJ45 cable into something 0.05𝑚𝑚3.

As it turns out that’s approximately 2.25× 1019𝑚3 of much bigger than nano-bot devices you’ve got there. Hope you
have some deep pockets, as that’s nearly the volume of 1.8 times all of earths oceans. That’s per person.

This means that with the power of all our sand-bots combined we’d have roughly the volume of twelve of earth’s suns.

Conversely, all 232 IPv4 addresses would slightly overflow a 50-gallon drum amassing a measly 56.7 gallons. It is not
a surprise that we’ve practically exhausted the IPv4 address space. That said, if we mismanage IPv6 we may run out
there too, and Arcus will have to do 256-bit or 1024-bit math, I’m ready.

IPv6 is 7.9× 1028 times larger than IPv4

1 The number of objects an average person can hold in working memory is about seven. see Wikipedia

45

https://github.com/sandialabs/gulliver
http://data.un.org/
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two


Arcus

46 Chapter 13. Frequently Asked Questions



CHAPTER

FOURTEEN

GLOSSARY

Arcus Arcus is the lesser known Roman equivalent of the Greek goddess Iris. She is the Olympian messenger god.
You know, because IP Addresses and Subnets are all about sending messages. Rainbows are cool too.

AddressFamily The C# AddressFamily is an enum that defines the type of an IPAddress. Both IPAddress and
Arcus are only concerned with InterNetwork an IPv4 address, and InterNetworkV6 an IPv6 address.

CIDR Short for Classless Inter-Domain Routing, is a way of expressing a range of IP addresses.

see CIDR on Wikipedia

Endianness Endianness referees to the ordering of bytes in the binary representation of data.

see Endianness on Wikipedia

Big-Endian Big-Endian ordering, at times also referred to as Network Byte Order, is a left-to-right ordering of bytes
where the left most bytes are most significant than right most.

For example, the decimal value of the unsigned integer 6060842 may be represented as 0x5C7B2A in hex-
adecimal. This hexadecimal value is composed of the three bytes 0x5C, 0x7B, and 0x28. As such the value
6060842 may be represented in Big-Endian as a byte array of [0x5C, 0x7B, 0x2A].

see Gulliver’s What is Endianness

Gulliver Gulliver is a C# utility package and library engineered for the manipulation of arbitrary sized byte arrays
accounting for appropriate endianness and jagged byte length. It was developed by the same folks who created
Arcus.

see Gulliver on GitHub

IP Address Short for Internet Protocol Address it is a numeric representation that typically comes in two flavors
IPv4 and IPv6.

see IP Address on Wikipedia

IPv4 IPv4 is an IP Address that follows version 4 of the Internet Protocol. It is a 32-bit number, four bytes, with 232

distinct addresses. IPv4 Addresses are typically represented in a format referred to as Dotted Quad or Quad-
dotted in which the four bytes making the address are delimited by a period (.) character in decimal big-endian
order, such as 192.168.1.0.

see IPv4 on Wikipedia

IPv6 IPv6 is an IP Address following version 6 of the Internet Protocol. It is a 128-bit number, 16 bytes, with 2128

distinct addresses. It is typically expressed in a “human readable”1 format in Big-Endian byte order typically
with hextets delimited with colons and collapses, such as the equivalent fd04:f0bf:44a0:df4e:: and
fd04:f0bf:44a0:df4e:0000:0000:0000:0000.

1 And by “human readable” the author means a draconian format consisting of groupings of two byte hextets delimited by colons that aren’t
always two bytes long and sometimes the colons do funny things as do zeros, and oh yeah, occasionally the IPv4 dotted-quad format pops up and
makes things even more interesting. see RFC5952.

47

https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.addressfamily?view=netstandard-1.3
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Endianness
https://gulliver.readthedocs.io/en/latest/What-is-Endianness.html#what-is-endianness
https://github.com/sandialabs/gulliver
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/IPv4
https://tools.ietf.org/html/rfc5952


Arcus

see IPv6 on Wikipedia

Subnet Subnet, also known as Subnetwork, is a logical subdivision of an Internet Protocol network. Much like IP
Addresses they come in both IPv4 and IPv6 flavors.

see Subnetwork on Wikipedia

48 Chapter 14. Glossary

https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Subnetwork


CHAPTER

FIFTEEN

HANDY REFERENCES

15.1 IPv4 CIDR Table

Table 1: Subnet format values
CIDR Network Prefix Address Route Prefix Netmask Netmask (bits) Address Count Address Count 2^n
255.255.255.255/32 255.255.255.255 32 255.255.255.255 11111111 11111111 11111111 11111111 1 0
255.255.255.254/31 255.255.255.254 31 255.255.255.254 11111111 11111111 11111111 11111110 2 1
255.255.255.252/30 255.255.255.252 30 255.255.255.252 11111111 11111111 11111111 11111100 4 2
255.255.255.248/29 255.255.255.248 29 255.255.255.248 11111111 11111111 11111111 11111000 8 3
255.255.255.240/28 255.255.255.240 28 255.255.255.240 11111111 11111111 11111111 11110000 16 4
255.255.255.224/27 255.255.255.224 27 255.255.255.224 11111111 11111111 11111111 11100000 32 5
255.255.255.192/26 255.255.255.192 26 255.255.255.192 11111111 11111111 11111111 11000000 64 6
255.255.255.128/25 255.255.255.128 25 255.255.255.128 11111111 11111111 11111111 10000000 128 7
255.255.255.0/24 255.255.255.0 24 255.255.255.0 11111111 11111111 11111111 00000000 256 8
255.255.254.0/23 255.255.254.0 23 255.255.254.0 11111111 11111111 11111110 00000000 512 9
255.255.252.0/22 255.255.252.0 22 255.255.252.0 11111111 11111111 11111100 00000000 1024 10
255.255.248.0/21 255.255.248.0 21 255.255.248.0 11111111 11111111 11111000 00000000 2048 11
255.255.240.0/20 255.255.240.0 20 255.255.240.0 11111111 11111111 11110000 00000000 4096 12
255.255.224.0/19 255.255.224.0 19 255.255.224.0 11111111 11111111 11100000 00000000 8192 13
255.255.192.0/18 255.255.192.0 18 255.255.192.0 11111111 11111111 11000000 00000000 16384 14
255.255.128.0/17 255.255.128.0 17 255.255.128.0 11111111 11111111 10000000 00000000 32768 15
255.255.0.0/16 255.255.0.0 16 255.255.0.0 11111111 11111111 00000000 00000000 65536 16
255.254.0.0/15 255.254.0.0 15 255.254.0.0 11111111 11111110 00000000 00000000 131072 17
255.252.0.0/14 255.252.0.0 14 255.252.0.0 11111111 11111100 00000000 00000000 262144 18
255.248.0.0/13 255.248.0.0 13 255.248.0.0 11111111 11111000 00000000 00000000 524288 19
255.240.0.0/12 255.240.0.0 12 255.240.0.0 11111111 11110000 00000000 00000000 1048576 20
255.224.0.0/11 255.224.0.0 11 255.224.0.0 11111111 11100000 00000000 00000000 2097152 21
255.192.0.0/10 255.192.0.0 10 255.192.0.0 11111111 11000000 00000000 00000000 4194304 22
255.128.0.0/9 255.128.0.0 9 255.128.0.0 11111111 10000000 00000000 00000000 8388608 23
255.0.0.0/8 255.0.0.0 8 255.0.0.0 11111111 00000000 00000000 00000000 16777216 24
254.0.0.0/7 254.0.0.0 7 254.0.0.0 11111110 00000000 00000000 00000000 33554432 25
252.0.0.0/6 252.0.0.0 6 252.0.0.0 11111100 00000000 00000000 00000000 67108864 26
248.0.0.0/5 248.0.0.0 5 248.0.0.0 11111000 00000000 00000000 00000000 134217728 27
240.0.0.0/4 240.0.0.0 4 240.0.0.0 11110000 00000000 00000000 00000000 268435456 28
224.0.0.0/3 224.0.0.0 3 224.0.0.0 11100000 00000000 00000000 00000000 536870912 29
192.0.0.0/2 192.0.0.0 2 192.0.0.0 11000000 00000000 00000000 00000000 1073741824 30
128.0.0.0/1 128.0.0.0 1 128.0.0.0 10000000 00000000 00000000 00000000 2147483648 31
0.0.0.0/0 0.0.0.0 0 0.0.0.0 00000000 00000000 00000000 00000000 4294967296 32

49



Arcus

15.2 IPv6 CIDR Table

Table 2: Subnet format values
CIDR Network Prefix Address Route Prefix Address Count Address Count 2^n
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff 128 1 0
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe/127 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffe 127 2 1
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffc/126 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fffc 126 4 2
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff8/125 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff8 125 8 3
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0/124 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0 124 16 4
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffe0/123 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffe0 123 32 5
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffc0/122 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffc0 122 64 6
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ff80/121 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ff80 121 128 7
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ff00/120 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ff00 120 256 8
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fe00/119 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fe00 119 512 9
ffff:ffff:ffff:ffff:ffff:ffff:ffff:fc00/118 ffff:ffff:ffff:ffff:ffff:ffff:ffff:fc00 118 1024 10
ffff:ffff:ffff:ffff:ffff:ffff:ffff:f800/117 ffff:ffff:ffff:ffff:ffff:ffff:ffff:f800 117 2048 11
ffff:ffff:ffff:ffff:ffff:ffff:ffff:f000/116 ffff:ffff:ffff:ffff:ffff:ffff:ffff:f000 116 4096 12
ffff:ffff:ffff:ffff:ffff:ffff:ffff:e000/115 ffff:ffff:ffff:ffff:ffff:ffff:ffff:e000 115 8192 13
ffff:ffff:ffff:ffff:ffff:ffff:ffff:c000/114 ffff:ffff:ffff:ffff:ffff:ffff:ffff:c000 114 16384 14
ffff:ffff:ffff:ffff:ffff:ffff:ffff:8000/113 ffff:ffff:ffff:ffff:ffff:ffff:ffff:8000 113 32768 15
ffff:ffff:ffff:ffff:ffff:ffff:ffff:0/112 ffff:ffff:ffff:ffff:ffff:ffff:ffff:0 112 65536 16
ffff:ffff:ffff:ffff:ffff:ffff:fffe:0/111 ffff:ffff:ffff:ffff:ffff:ffff:fffe:0 111 131072 17
ffff:ffff:ffff:ffff:ffff:ffff:fffc:0/110 ffff:ffff:ffff:ffff:ffff:ffff:fffc:0 110 262144 18
ffff:ffff:ffff:ffff:ffff:ffff:fff8:0/109 ffff:ffff:ffff:ffff:ffff:ffff:fff8:0 109 524288 19
ffff:ffff:ffff:ffff:ffff:ffff:fff0:0/108 ffff:ffff:ffff:ffff:ffff:ffff:fff0:0 108 1048576 20
ffff:ffff:ffff:ffff:ffff:ffff:ffe0:0/107 ffff:ffff:ffff:ffff:ffff:ffff:ffe0:0 107 2097152 21
ffff:ffff:ffff:ffff:ffff:ffff:ffc0:0/106 ffff:ffff:ffff:ffff:ffff:ffff:ffc0:0 106 4194304 22
ffff:ffff:ffff:ffff:ffff:ffff:ff80:0/105 ffff:ffff:ffff:ffff:ffff:ffff:ff80:0 105 8388608 23
ffff:ffff:ffff:ffff:ffff:ffff:ff00:0/104 ffff:ffff:ffff:ffff:ffff:ffff:ff00:0 104 16777216 24
ffff:ffff:ffff:ffff:ffff:ffff:fe00:0/103 ffff:ffff:ffff:ffff:ffff:ffff:fe00:0 103 33554432 25
ffff:ffff:ffff:ffff:ffff:ffff:fc00:0/102 ffff:ffff:ffff:ffff:ffff:ffff:fc00:0 102 67108864 26
ffff:ffff:ffff:ffff:ffff:ffff:f800:0/101 ffff:ffff:ffff:ffff:ffff:ffff:f800:0 101 134217728 27
ffff:ffff:ffff:ffff:ffff:ffff:f000:0/100 ffff:ffff:ffff:ffff:ffff:ffff:f000:0 100 268435456 28
ffff:ffff:ffff:ffff:ffff:ffff:e000:0/99 ffff:ffff:ffff:ffff:ffff:ffff:e000:0 99 536870912 29
ffff:ffff:ffff:ffff:ffff:ffff:c000:0/98 ffff:ffff:ffff:ffff:ffff:ffff:c000:0 98 1073741824 30
ffff:ffff:ffff:ffff:ffff:ffff:8000:0/97 ffff:ffff:ffff:ffff:ffff:ffff:8000:0 97 2147483648 31
ffff:ffff:ffff:ffff:ffff:ffff::/96 ffff:ffff:ffff:ffff:ffff:ffff: 96 4294967296 32
ffff:ffff:ffff:ffff:ffff:fffe::/95 ffff:ffff:ffff:ffff:ffff:fffe: 95 8589934592 33
ffff:ffff:ffff:ffff:ffff:fffc::/94 ffff:ffff:ffff:ffff:ffff:fffc: 94 17179869184 34
ffff:ffff:ffff:ffff:ffff:fff8::/93 ffff:ffff:ffff:ffff:ffff:fff8: 93 34359738368 35
ffff:ffff:ffff:ffff:ffff:fff0::/92 ffff:ffff:ffff:ffff:ffff:fff0: 92 68719476736 36
ffff:ffff:ffff:ffff:ffff:ffe0::/91 ffff:ffff:ffff:ffff:ffff:ffe0: 91 137438953472 37
ffff:ffff:ffff:ffff:ffff:ffc0::/90 ffff:ffff:ffff:ffff:ffff:ffc0: 90 274877906944 38
ffff:ffff:ffff:ffff:ffff:ff80::/89 ffff:ffff:ffff:ffff:ffff:ff80: 89 549755813888 39
ffff:ffff:ffff:ffff:ffff:ff00::/88 ffff:ffff:ffff:ffff:ffff:ff00: 88 1099511627776 40
ffff:ffff:ffff:ffff:ffff:fe00::/87 ffff:ffff:ffff:ffff:ffff:fe00: 87 2199023255552 41
ffff:ffff:ffff:ffff:ffff:fc00::/86 ffff:ffff:ffff:ffff:ffff:fc00: 86 4398046511104 42
ffff:ffff:ffff:ffff:ffff:f800::/85 ffff:ffff:ffff:ffff:ffff:f800: 85 8796093022208 43
ffff:ffff:ffff:ffff:ffff:f000::/84 ffff:ffff:ffff:ffff:ffff:f000: 84 17592186044416 44
ffff:ffff:ffff:ffff:ffff:e000::/83 ffff:ffff:ffff:ffff:ffff:e000: 83 35184372088832 45

Continued on next page

50 Chapter 15. Handy References



Arcus

Table 2 – continued from previous page
CIDR Network Prefix Address Route Prefix Address Count Address Count 2^n
ffff:ffff:ffff:ffff:ffff:c000::/82 ffff:ffff:ffff:ffff:ffff:c000: 82 70368744177664 46
ffff:ffff:ffff:ffff:ffff:8000::/81 ffff:ffff:ffff:ffff:ffff:8000: 81 140737488355328 47
ffff:ffff:ffff:ffff:ffff::/80 ffff:ffff:ffff:ffff:ffff: 80 281474976710656 48
ffff:ffff:ffff:ffff:fffe::/79 ffff:ffff:ffff:ffff:fffe: 79 562949953421312 49
ffff:ffff:ffff:ffff:fffc::/78 ffff:ffff:ffff:ffff:fffc: 78 1125899906842624 50
ffff:ffff:ffff:ffff:fff8::/77 ffff:ffff:ffff:ffff:fff8: 77 2251799813685248 51
ffff:ffff:ffff:ffff:fff0::/76 ffff:ffff:ffff:ffff:fff0: 76 4503599627370496 52
ffff:ffff:ffff:ffff:ffe0::/75 ffff:ffff:ffff:ffff:ffe0: 75 9007199254740992 53
ffff:ffff:ffff:ffff:ffc0::/74 ffff:ffff:ffff:ffff:ffc0: 74 18014398509481984 54
ffff:ffff:ffff:ffff:ff80::/73 ffff:ffff:ffff:ffff:ff80: 73 36028797018963968 55
ffff:ffff:ffff:ffff:ff00::/72 ffff:ffff:ffff:ffff:ff00: 72 72057594037927936 56
ffff:ffff:ffff:ffff:fe00::/71 ffff:ffff:ffff:ffff:fe00: 71 144115188075855872 57
ffff:ffff:ffff:ffff:fc00::/70 ffff:ffff:ffff:ffff:fc00: 70 288230376151711744 58
ffff:ffff:ffff:ffff:f800::/69 ffff:ffff:ffff:ffff:f800: 69 576460752303423488 59
ffff:ffff:ffff:ffff:f000::/68 ffff:ffff:ffff:ffff:f000: 68 1152921504606846976 60
ffff:ffff:ffff:ffff:e000::/67 ffff:ffff:ffff:ffff:e000: 67 2305843009213693952 61
ffff:ffff:ffff:ffff:c000::/66 ffff:ffff:ffff:ffff:c000: 66 4611686018427387904 62
ffff:ffff:ffff:ffff:8000::/65 ffff:ffff:ffff:ffff:8000: 65 9223372036854775808 63
ffff:ffff:ffff:ffff::/64 ffff:ffff:ffff:ffff: 64 18446744073709551616 64
ffff:ffff:ffff:fffe::/63 ffff:ffff:ffff:fffe: 63 36893488147419103232 65
ffff:ffff:ffff:fffc::/62 ffff:ffff:ffff:fffc: 62 73786976294838206464 66
ffff:ffff:ffff:fff8::/61 ffff:ffff:ffff:fff8: 61 147573952589676412928 67
ffff:ffff:ffff:fff0::/60 ffff:ffff:ffff:fff0: 60 295147905179352825856 68
ffff:ffff:ffff:ffe0::/59 ffff:ffff:ffff:ffe0: 59 590295810358705651712 69
ffff:ffff:ffff:ffc0::/58 ffff:ffff:ffff:ffc0: 58 1180591620717411303424 70
ffff:ffff:ffff:ff80::/57 ffff:ffff:ffff:ff80: 57 2361183241434822606848 71
ffff:ffff:ffff:ff00::/56 ffff:ffff:ffff:ff00: 56 4722366482869645213696 72
ffff:ffff:ffff:fe00::/55 ffff:ffff:ffff:fe00: 55 9444732965739290427392 73
ffff:ffff:ffff:fc00::/54 ffff:ffff:ffff:fc00: 54 18889465931478580854784 74
ffff:ffff:ffff:f800::/53 ffff:ffff:ffff:f800: 53 37778931862957161709568 75
ffff:ffff:ffff:f000::/52 ffff:ffff:ffff:f000: 52 75557863725914323419136 76
ffff:ffff:ffff:e000::/51 ffff:ffff:ffff:e000: 51 151115727451828646838272 77
ffff:ffff:ffff:c000::/50 ffff:ffff:ffff:c000: 50 302231454903657293676544 78
ffff:ffff:ffff:8000::/49 ffff:ffff:ffff:8000: 49 604462909807314587353088 79
ffff:ffff:ffff::/48 ffff:ffff:ffff: 48 1208925819614629174706176 80
ffff:ffff:fffe::/47 ffff:ffff:fffe: 47 2417851639229258349412352 81
ffff:ffff:fffc::/46 ffff:ffff:fffc: 46 4835703278458516698824704 82
ffff:ffff:fff8::/45 ffff:ffff:fff8: 45 9671406556917033397649408 83
ffff:ffff:fff0::/44 ffff:ffff:fff0: 44 19342813113834066795298816 84
ffff:ffff:ffe0::/43 ffff:ffff:ffe0: 43 38685626227668133590597632 85
ffff:ffff:ffc0::/42 ffff:ffff:ffc0: 42 77371252455336267181195264 86
ffff:ffff:ff80::/41 ffff:ffff:ff80: 41 154742504910672534362390528 87
ffff:ffff:ff00::/40 ffff:ffff:ff00: 40 309485009821345068724781056 88
ffff:ffff:fe00::/39 ffff:ffff:fe00: 39 618970019642690137449562112 89
ffff:ffff:fc00::/38 ffff:ffff:fc00: 38 1237940039285380274899124224 90
ffff:ffff:f800::/37 ffff:ffff:f800: 37 2475880078570760549798248448 91
ffff:ffff:f000::/36 ffff:ffff:f000: 36 4951760157141521099596496896 92
ffff:ffff:e000::/35 ffff:ffff:e000: 35 9903520314283042199192993792 93
ffff:ffff:c000::/34 ffff:ffff:c000: 34 19807040628566084398385987584 94

Continued on next page

15.2. IPv6 CIDR Table 51



Arcus

Table 2 – continued from previous page
CIDR Network Prefix Address Route Prefix Address Count Address Count 2^n
ffff:ffff:8000::/33 ffff:ffff:8000: 33 39614081257132168796771975168 95
ffff:ffff::/32 ffff:ffff: 32 79228162514264337593543950336 96
ffff:fffe::/31 ffff:fffe: 31 158456325028528675187087900672 97
ffff:fffc::/30 ffff:fffc: 30 316912650057057350374175801344 98
ffff:fff8::/29 ffff:fff8: 29 633825300114114700748351602688 99
ffff:fff0::/28 ffff:fff0: 28 1267650600228229401496703205376 100
ffff:ffe0::/27 ffff:ffe0: 27 2535301200456458802993406410752 101
ffff:ffc0::/26 ffff:ffc0: 26 5070602400912917605986812821504 102
ffff:ff80::/25 ffff:ff80: 25 10141204801825835211973625643008 103
ffff:ff00::/24 ffff:ff00: 24 20282409603651670423947251286016 104
ffff:fe00::/23 ffff:fe00: 23 40564819207303340847894502572032 105
ffff:fc00::/22 ffff:fc00: 22 81129638414606681695789005144064 106
ffff:f800::/21 ffff:f800: 21 162259276829213363391578010288128 107
ffff:f000::/20 ffff:f000: 20 324518553658426726783156020576256 108
ffff:e000::/19 ffff:e000: 19 649037107316853453566312041152512 109
ffff:c000::/18 ffff:c000: 18 1298074214633706907132624082305024 110
ffff:8000::/17 ffff:8000: 17 2596148429267413814265248164610048 111
ffff::/16 ffff: 16 5192296858534827628530496329220096 112
fffe::/15 fffe: 15 10384593717069655257060992658440192 113
fffc::/14 fffc: 14 20769187434139310514121985316880384 114
fff8::/13 fff8: 13 41538374868278621028243970633760768 115
fff0::/12 fff0: 12 83076749736557242056487941267521536 116
ffe0::/11 ffe0: 11 166153499473114484112975882535043072 117
ffc0::/10 ffc0: 10 332306998946228968225951765070086144 118
ff80::/9 ff80: 9 664613997892457936451903530140172288 119
ff00::/8 ff00: 8 1329227995784915872903807060280344576 120
fe00::/7 fe00: 7 2658455991569831745807614120560689152 121
fc00::/6 fc00: 6 5316911983139663491615228241121378304 122
f800::/5 f800: 5 10633823966279326983230456482242756608 123
f000::/4 f000: 4 21267647932558653966460912964485513216 124
e000::/3 e000: 3 42535295865117307932921825928971026432 125
c000::/2 c000: 2 85070591730234615865843651857942052864 126
8000::/1 8000: 1 170141183460469231731687303715884105728 127
::/0 0 340282366920938463463374607431768211456 128

15.3 Valid IPv4 Netmasks

Listing 1: Valid Netmasks

0.0.0.0 00000000 00000000 00000000 00000000
128.0.0.0 10000000 00000000 00000000 00000000
192.0.0.0 11000000 00000000 00000000 00000000
224.0.0.0 11100000 00000000 00000000 00000000
240.0.0.0 11110000 00000000 00000000 00000000
248.0.0.0 11111000 00000000 00000000 00000000
252.0.0.0 11111100 00000000 00000000 00000000
254.0.0.0 11111110 00000000 00000000 00000000
255.0.0.0 11111111 00000000 00000000 00000000
255.128.0.0 11111111 10000000 00000000 00000000
255.192.0.0 11111111 11000000 00000000 00000000

(continues on next page)

52 Chapter 15. Handy References



Arcus

(continued from previous page)

255.224.0.0 11111111 11100000 00000000 00000000
255.240.0.0 11111111 11110000 00000000 00000000
255.248.0.0 11111111 11111000 00000000 00000000
255.252.0.0 11111111 11111100 00000000 00000000
255.254.0.0 11111111 11111110 00000000 00000000
255.255.0.0 11111111 11111111 00000000 00000000
255.255.128.0 11111111 11111111 10000000 00000000
255.255.192.0 11111111 11111111 11000000 00000000
255.255.224.0 11111111 11111111 11100000 00000000
255.255.240.0 11111111 11111111 11110000 00000000
255.255.248.0 11111111 11111111 11111000 00000000
255.255.252.0 11111111 11111111 11111100 00000000
255.255.254.0 11111111 11111111 11111110 00000000
255.255.255.0 11111111 11111111 11111111 00000000
255.255.255.128 11111111 11111111 11111111 10000000
255.255.255.192 11111111 11111111 11111111 11000000
255.255.255.224 11111111 11111111 11111111 11100000
255.255.255.240 11111111 11111111 11111111 11110000
255.255.255.248 11111111 11111111 11111111 11111000
255.255.255.252 11111111 11111111 11111111 11111100
255.255.255.254 11111111 11111111 11111111 11111110
255.255.255.255 11111111 11111111 11111111 11111111

15.3. Valid IPv4 Netmasks 53



Arcus

54 Chapter 15. Handy References



CHAPTER

SIXTEEN

COMMUNITY

16.1 GitHub

Source Code available on Arcus GitHub

16.2 GITTER

The developers monitor the Arcus Gitter chat drop us a line.

16.3 File an Issue

Issues should be filed on the Arcus GitHub Issue Tracker.

55

https://github.com/sandialabs/Arcus/stargazers
https://github.com/sandialabs/Arcus/watchers
https://github.com/sandialabs/Arcus
https://gitter.im/sandialabs/Arcus
https://github.com/sandialabs/Arcus/issues


Arcus

56 Chapter 16. Community



CHAPTER

SEVENTEEN

ACKNOWLEDGEMENTS

17.1 Citations

17.1.1 Arcus logo

Logo cropped from image “Iris Carrying the Water of the River Styx to Olympus for the Gods to Swear By, Guy Head,
c. 1793 - Nelson-Atkins Museum of Art” sourced from Wikimedia Commons.

Exhibit in the Nelson-Atkins Museum of Art, Kansas City, Missouri, USA. Photography was permitted
in the museum without restriction

This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.

The person who associated a work with this deed has dedicated the work to the public domain by waiving
all of their rights to the work worldwide under copyright law, including all related and neighboring rights,
to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial
purposes, all without asking permission.

17.1.2 Structure of a 48-bit MAC address

Diagram showing the structure of a MAC-48 network address, explicitly showing the positions of the multicast/unicast
bit and the OUI/local address type bit.

This file is licensed under the Creative Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and
1.0 Generic license.

57

https://commons.wikimedia.org/wiki/File:Iris_Carrying_the_Water_of_the_River_Styx_to_Olympus_for_the_Gods_to_Swear_By,_Guy_Head,_c._1793_-_Nelson-Atkins_Museum_of_Art_-_DSC08946.JPG
https://commons.wikimedia.org/wiki/File:Iris_Carrying_the_Water_of_the_River_Styx_to_Olympus_for_the_Gods_to_Swear_By,_Guy_Head,_c._1793_-_Nelson-Atkins_Museum_of_Art_-_DSC08946.JPG
https://commons.wikimedia.org/wiki/File:MAC-48_Address.svg
https://commons.wikimedia.org/wiki/File:MAC-48_Address.svg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/1.0/deed.en


Arcus

58 Chapter 17. Acknowledgements



INDEX

A
AddressFamily, 47
Arcus, 47

B
Big-Endian, 47

C
CIDR, 47

E
Endianness, 47

G
Gulliver, 47

I
IP Address, 47
IPv4, 47
IPv6, 47

S
Subnet, 48

59


	IIPAddressRange
	AbstractIPAddressRange
	IPAddress Range
	Subnet
	Subnet Utilities
	IP Address Range Comparers
	IP Address Converters
	IP Address Math
	IP Address Utilities
	IPAddress Comparers
	AddressFamily Comparers
	MacAddress
	Frequently Asked Questions
	Glossary
	Handy References
	Community
	Acknowledgements
	Index

